Cabling Innovations

Alex Wainscott William Murray Grace Morriss

The Braidy Bunch

- * Alex Wainscott: Team Leader, Management Communications, Structural Design Leader
- William Murray: Mechanical Leader, Motor/Plate Design Leader, Fabrication Leader
- * Grace Morriss: Lead Systems Integrator, Electrical Leader, Written Reports Editor

Initial Problem

- * General Cable only runs C-Cell a few months out of the year and next year are looking at running 50% of the year
- * They currently run Category 3 Cable
- * They would like to be able to run Category 5 on the line

Economic Motivation

Labor Savings				
Line Speed (ft/min)	100	200	300	350
Min/hr	60	60	60	60
Hrs/day	24	24	24	24
Days/year	158	158	158	158
Ft/year	22,752,000	45,504,000	68,256,000	79,632,000
Boxes (1000ft)	22,752	45,504	68,256	79,632
Labor cost / Box	\$2.82	\$2.82	\$2.82	\$2.82
40% Labor Reduction	\$25,664.26	\$51,328.51	\$76,992.77	\$89,824.90

Construction of Category 5 Cable

- Primary conductors fed into bows to twist them
- * Twinned pairs (4) fed into central line to be bunched
- Bunched pairs immediately jacketed

C-Cell

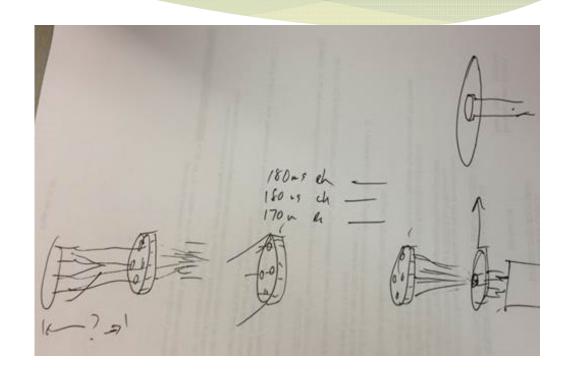
Our Task

- Create a "bunching" stage for the line
- Investigate bunching patterns to prevent crosstalk (interference between the wires) by changing lays
- Hold the bunched pairs until jacketed
- * Integrate our design with the current PLC system running the line
- * Explore the use of a faceplate system to bunch the pairs

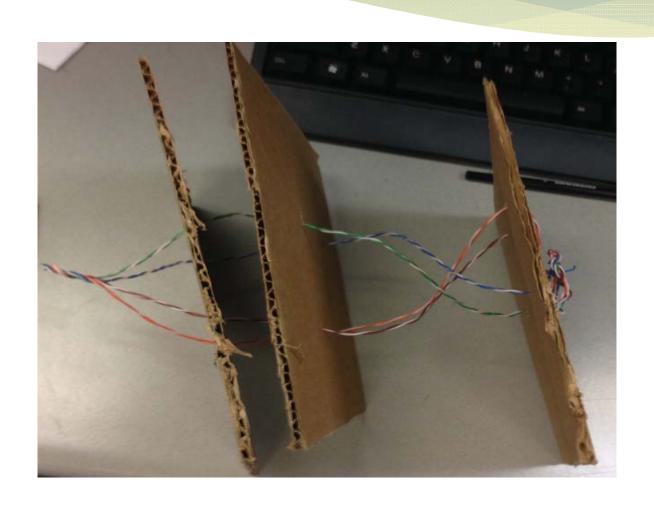
Quantitative Parameters

- Space: approximately 6x3x4 feet with obstacles
- * Tension: no more than 2 ½ lb/pair
- * Line speed: 100 fpm constant with 200 fpm maximum
- * Lay length: 3" to 5"

* {Line Speed
$$\left(\frac{feet}{minute}\right)$$
 * $\frac{1 \ minute}{60 \ seconds}$ } / {Lay Length $\left(\frac{inches}{twist}\right)$ * $\frac{1 \ foot}{12 \ inches}$ } = $\frac{Rev \ (or \ twist)}{sec}$


* Model can produce 10,000 feet of Cat 5 cable

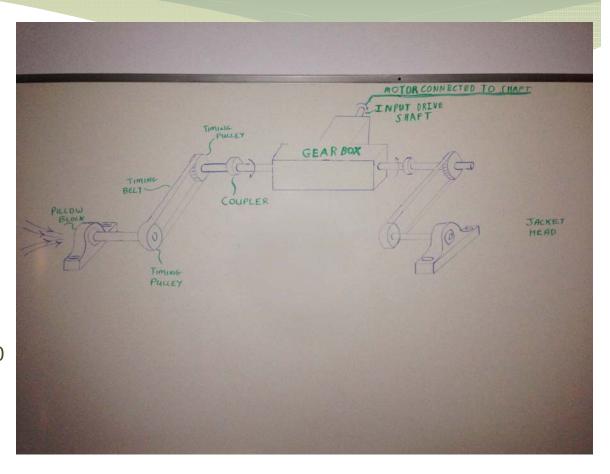
Design Goals for Evaluation


Goals	Ratings	Weight
Safety	9	100
Performance	7.5	95
Reliability	6.5	60
Acceptance	6	80
Ease of Operation	5.5	60
Durability	5.5	31
Ease of Maintenance	5	45
Ergonomics	4.5	45
Standard Parts	2.5	30
Minimal Cost	1.5	35
Environment	.5	17.5

Mr. Booker's Request

- * Three driven face plates
- Questionable vortex and spacing between plates
- Different speeds for each plate

Our Analogic Model


Design Option 1: Gear Box

* Advantages

- Two driven timing pulleys
- * Controlled by one motor
- * Minimized vortex

* Disadvantages

- No premade one available
- Time frame did not allow manufacturing
- Spacing would be difficult to predict
- Cost was difficult to justify

Design Option 2: Pulley System

* Advantages

- Minimized design time
- Simpler construction
- Proves concept with one motor
- Variability of spacing

* Disadvantages

- Some uncertainties in number of pillow blocks required for final system
- Wear and tear on belt

Pulley System

- Features of the Final Design
 - Pillow block:
 - Delrin insert
 - QD bushing
 - Timing belt pulley
 - Shaft collar
 - Motor
 - QD Bushing
 - Timing Belt Pulley
 - Timing Belt

Support Structure

Motor Selection

Options:

- * Servo
 - Allowed speed control
 - Difficult to control distance turn
- * Stepper
 - Allow position control
 - Hard to control speed

Final Choice:

- Indexing Servo motor
 - Allows speed or index commands
 - Can be adapted to run as a mixture
 - Readily available as a spare part
 - 5000 rpm max exceeds our requirements

Drive and PLC

- * Drive: Kinetix 300
 - Also a spare part
 - Ethernet communication
 - Motor feedback
- * PLC: CompactLogix L23E
 - Free sample
 - RSLogix 5000 for programming

- * Potentiometer
 - Will be used to control lay length input
 - Input can be scaled to any range
- Periphery Parts
 - Circuit breaker
 - 480V AC to 24 V DC power supply
 - Ethernet Switch

Electrical Panel Implementation

Current Testing Goals

- * Accel/Decel rates for the drive
- * Integration to run real wire, avoiding back-twist
- * Find the best combination of settings for the wire
 - 1 pulley system being turned or 2?
 - Lay length
 - Line speed
 - Number of turns per operation

Suggestions for Full Scale Implementation

* Safety

- Guard for the belt
- Remove STO bypass and include E-Stop
- Additional circuit breakers, larger enclosure, 120V DC supply to run fans
- * Functionality
 - Integrate with line SLC
 - Permanent Structure
 - Second driven pulley system potentially

Acknowledgments

General Cable:

- Neal Booker
- John White
- Ky Bailey
- Eric Davidson
- Robert Hughes

Union University:

- Dr. Bernheisel
- Dr. Van
- Dr. Schwindt

Prime Controls:

- Lee Graver
- Colin Sikorski

Questions?