Cabling Innovations Alex Wainscott William Murray Grace Morriss ## The Braidy Bunch - * Alex Wainscott: Team Leader, Management Communications, Structural Design Leader - William Murray: Mechanical Leader, Motor/Plate Design Leader, Fabrication Leader - * Grace Morriss: Lead Systems Integrator, Electrical Leader, Written Reports Editor ### Initial Problem - * General Cable only runs C-Cell a few months out of the year and next year are looking at running 50% of the year - * They currently run Category 3 Cable - * They would like to be able to run Category 5 on the line ### **Economic Motivation** | Labor
Savings | | | | | |------------------------|-------------|-------------|-------------|-------------| | Line Speed
(ft/min) | 100 | 200 | 300 | 350 | | Min/hr | 60 | 60 | 60 | 60 | | Hrs/day | 24 | 24 | 24 | 24 | | Days/year | 158 | 158 | 158 | 158 | | Ft/year | 22,752,000 | 45,504,000 | 68,256,000 | 79,632,000 | | Boxes
(1000ft) | 22,752 | 45,504 | 68,256 | 79,632 | | Labor cost /
Box | \$2.82 | \$2.82 | \$2.82 | \$2.82 | | 40% Labor
Reduction | \$25,664.26 | \$51,328.51 | \$76,992.77 | \$89,824.90 | # Construction of Category 5 Cable - Primary conductors fed into bows to twist them - * Twinned pairs (4) fed into central line to be bunched - Bunched pairs immediately jacketed # C-Cell ### Our Task - Create a "bunching" stage for the line - Investigate bunching patterns to prevent crosstalk (interference between the wires) by changing lays - Hold the bunched pairs until jacketed - * Integrate our design with the current PLC system running the line - * Explore the use of a faceplate system to bunch the pairs ### Quantitative Parameters - Space: approximately 6x3x4 feet with obstacles - * Tension: no more than 2 ½ lb/pair - * Line speed: 100 fpm constant with 200 fpm maximum - * Lay length: 3" to 5" * {Line Speed $$\left(\frac{feet}{minute}\right)$$ * $\frac{1 \ minute}{60 \ seconds}$ } / {Lay Length $\left(\frac{inches}{twist}\right)$ * $\frac{1 \ foot}{12 \ inches}$ } = $\frac{Rev \ (or \ twist)}{sec}$ * Model can produce 10,000 feet of Cat 5 cable # Design Goals for Evaluation | Goals | Ratings | Weight | |---------------------|---------|--------| | Safety | 9 | 100 | | Performance | 7.5 | 95 | | Reliability | 6.5 | 60 | | Acceptance | 6 | 80 | | Ease of Operation | 5.5 | 60 | | Durability | 5.5 | 31 | | Ease of Maintenance | 5 | 45 | | Ergonomics | 4.5 | 45 | | Standard Parts | 2.5 | 30 | | Minimal Cost | 1.5 | 35 | | Environment | .5 | 17.5 | ## Mr. Booker's Request - * Three driven face plates - Questionable vortex and spacing between plates - Different speeds for each plate # Our Analogic Model ## Design Option 1: Gear Box #### * Advantages - Two driven timing pulleys - * Controlled by one motor - * Minimized vortex #### * Disadvantages - No premade one available - Time frame did not allow manufacturing - Spacing would be difficult to predict - Cost was difficult to justify # Design Option 2: Pulley System ### * Advantages - Minimized design time - Simpler construction - Proves concept with one motor - Variability of spacing ### * Disadvantages - Some uncertainties in number of pillow blocks required for final system - Wear and tear on belt # Pulley System - Features of the Final Design - Pillow block: - Delrin insert - QD bushing - Timing belt pulley - Shaft collar - Motor - QD Bushing - Timing Belt Pulley - Timing Belt # Support Structure ### Motor Selection #### Options: - * Servo - Allowed speed control - Difficult to control distance turn - * Stepper - Allow position control - Hard to control speed #### Final Choice: - Indexing Servo motor - Allows speed or index commands - Can be adapted to run as a mixture - Readily available as a spare part - 5000 rpm max exceeds our requirements ### Drive and PLC - * Drive: Kinetix 300 - Also a spare part - Ethernet communication - Motor feedback - * PLC: CompactLogix L23E - Free sample - RSLogix 5000 for programming - * Potentiometer - Will be used to control lay length input - Input can be scaled to any range - Periphery Parts - Circuit breaker - 480V AC to 24 V DC power supply - Ethernet Switch # Electrical Panel Implementation # **Current Testing Goals** - * Accel/Decel rates for the drive - * Integration to run real wire, avoiding back-twist - * Find the best combination of settings for the wire - 1 pulley system being turned or 2? - Lay length - Line speed - Number of turns per operation ### Suggestions for Full Scale Implementation ### * Safety - Guard for the belt - Remove STO bypass and include E-Stop - Additional circuit breakers, larger enclosure, 120V DC supply to run fans - * Functionality - Integrate with line SLC - Permanent Structure - Second driven pulley system potentially ## Acknowledgments #### General Cable: - Neal Booker - John White - Ky Bailey - Eric Davidson - Robert Hughes #### Union University: - Dr. Bernheisel - Dr. Van - Dr. Schwindt #### Prime Controls: - Lee Graver - Colin Sikorski ## Questions?