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ABSTRACT

In order to overcome the high computational costs of 3D
fluid-thermal topology optimization we introduce a pseudo 3D
model consisting of a conductive base-layer and a coupled fluid-
thermal design layer. While developed with heat sink designs in
mind, the resulting topology optimization approach can be ap-
plied to other fluid-thermal design problems where 2D flow ef-
fects dominate. We introduce the coupled fluid-thermal solver
based on the lattice Boltzmann method, develop and validate the
sensitivity analysis for the model, and illustrate the resulting op-
timization framework for a heat sink design problem.

INTRODUCTION

In component and system cooling applications the design of
flow channels and surfaces to promote maximum heat transfer
is of great importance. In recent years, particular focus has been
placed on the utilization of micro-scale heat transfer effects, lead-
ing to multi-scale and multi-physical design problems that are of-
ten nonlinear and non-intuitive. To enhance the solution process
for such coupled thermo-fluidic design problems, the authors in-
troduce a multi-layer, pseudo 3D thermal topology optimization
algorithm. While the specific focus of this work is on the optimal
design of heat sinks, the resulting framework is a generic topol-
ogy optimization framework that can be applied to a wide variety
of coupled thermo-fluidic design problems.

Microchannel heat sink optimization is of considerable in-
terest for a wide variety of applications. For example, Liu and
Garimella [1] consider analytical models with closed form so-
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lutions, Chen et al. [2] consider the optimal design of strip-fin
heat sinks, and Balagangadhar and Roy [3] use computational
shape optimization to optimize fin and duct designs for coupled
fluid-thermal applications, requiring close-to-optimal initial de-
signs as illustrated in Figure 1b. In recent years, increased fo-
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FIGURE 1. Shape vs. Topology Optimization

cus has been placed on topology optimization, which does not
require close-to-optimal initial designs and can generate new de-
sign features as shown in Figure 1c. Starting with the pioneering
work of Borrvall and Petersson [4], gradient-based flow topology
optimization approaches have been developed using both Navier-
Stokes (e.g. [5,6]) and kinetic theory based flow solvers [7], and
have found application in commercial software packages such
as COMSOL Multiphysics. These flow topology optimization
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FIGURE 2. Tllustration of a 2D thermal optimization, not permitting heated fins surrounded by fluid.
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FIGURE 3. Illustration of a pseudo-3D thermal optimization with a conductive base-layer and a design layer allowing for both heat and mass

transport.

methodologies have been developed for pure fluid flows and ex-
tended to various multi-physical flow phenomena, including 2D
coupled heat and mass transfer problems (e.g. [8—11]). While
these approaches have shown great promise and an extension of
the basic concept from 2D to 3D is straightforward, the compu-
tational cost can quickly become prohibitive as shown by Dede
[12,13] who use a *flattened’ thin 3D structure in their recent 3D
thermal fluidic topology optimization work. On the other hand,
3D effects are essential for many heat transfer applications and
cannot be neglected as illustrated in Figure 2 which shows that
2D optimizations do not permit the generation of heated fins sur-
rounded by a fluid as they are ’free-floating” and disconnected
from the remaining structures. To permit the solution of a subset
of 3D thermo-fluidic topology optimization problems at close to
2D computational cost, we introduce the use of a thermal base
layer that models 3-dimensional conduction effects as illustrated
in Figure 3. Thus, while the fluid flow is treated as a 2D prob-
lem, heat transfer can occur in 3 dimensions, permitting topology
optimization of e.g. lab-on-a-chip devices.

In the following sections, we will first introduce the overall
design problem and problem formulation, followed by an analyt-
ical motivation, a discussion of the lattice Boltzmann flow solver,
and a derivation and validation of the corresponding analytical
sensitivity analysis. We will illustrate the topology optimization
approach by presenting preliminary results for the optimal design
of a heat sink using: a) general topology optimization, b) the op-

timization of a single and triple fin, and c) the optimization of a
multi-fin heat sink. As part of this work, we will show that the
nonlinear interactions between thermal and fluidic effects lead
to poor convergence behavior of the optimizer with a preference
for undesired intermediate design variables. By employing dif-
ferent functional dependencies between the design variables and
fluid/thermal properties as well as utilizing penalty formulations,
we begin to explore options to improve the desired convergence
of the optimization algorithm to final designs consisting of pure
fluid and pure solid material.

DESIGN PROBLEM FORMULATION

The goal of the present work is the development of a topol-
ogy optimization algorithm for heat sink optimizations as illus-
trated in Figure 3b. Having a heated wall, thermal base-layer
permitting conduction, and a fluid-thermal design layer, we want
to determine the geometry of a design that promotes the maxi-
mum heat transfer from the heated walls. We can formulate the
following generic unconstrained topology optimization problem:

min 7 (s, f(s), (),

()
st { f18:

solves the governing equations for a given s,

where .Z is a particular performance (objective) functional (neg-
ative heat transfer in this case), f and g are the respective corre-
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sponding state variables for mass and heat transfer, and s is the
vector of design variables. To solve for the mass and heat transfer
state variables, we utilize the lattice Boltzmann method as dis-
cussed later. The thermal and hydrodynamic lattice Boltzmann
equations are then augmented to enable a continuous transition
from fluid to solid as needed for gradient-based topology opti-
mization. The resulting thermal optimization problem presented
in equation (1) is solved with a gradient-based optimization algo-
rithm, the Globally Convergent Method of Moving Asymptotes
(GCMMA) presented by Svanberg [14].

In order to reduce computational cost, the resulting analy-
sis and optimization framework will not be fully-3D, but instead
consist of a thermally conductive base-layer and thermo-fluidic
design layer as illustrated in Figure 3. This approach is motivated
by the common use of layer-deposition techniques in the fabri-
cation of micro-fluidic devices and has been used by Kreissl et
al. [15] for the optimal design of flexible micro-fluidic devices.
This approximation will be most accurate when the flow features
are relatively high compared to the flow-channel width, such that
the fluid flow is accurately represented by the 2D model.

Analytical Solution for Optimal Number of Fins

In order to show that one would indeed expect the formation
of fins for the design problem shown in Figure 3b under typical
flow conditions, a brief analytical analysis is performed. The
thermal energy balance for fluid flowing between heated walls is
given as:

O = nrhAAT,,, = mcAT,, 2)

where Q is the heat flux, ny is the number of flow channels, h is
the convection coefficient, A is the surface area, ATy, is the log-
mean temperature difference (AT, = %, where AT, =
Ty — T, and AT; = T; — T; with e, s, and i denoting exit, surface,
and inlet respectively), 7z is the mass flowrate, ¢ is the specific
heat, and AT, = T, — T; is the mean temperature difference of the
fluid.

We can now utilize the illustration in Figure 4 for constant
temperature fins with fully developed laminar flow to analyti-
cally determine a relation for the optimum number of fins needed
to achieve maximum heat transfer. Considering the solution for
flow between parallel plates, a relation for the average channel
velocity Ve can be found for a given pressure drop AP = P, — P,
as:

APw?
Vavg = M7 3)

where w is the individual channel width defined by the ratio of
overall width W to the number of flow channels ny (w = %), u

FIGURE 4. Notation for Analytical Fin Optimization

is the dynamic viscosity, and L is the channel length. The mass
flowrate can then be determined as:

APW3H

= pVang = pVangH = m,
f

“

where p is the fluid density, H is the height of the channels,
and v is the kinematic viscosity. We can now use these rela-
tions to express the right side of Eq. 2 in terms of the number
of flow channels ny, fluid temperatures, and known geometri-
cal and fluid properties. The left side of Eq. 2 can be modified
through the use of the Nusselt number. For fully developed lam-
inar flow through channels with constant surface temperatures
and an infinite height to width ratio inherent to our pseudo 3D
model, a Nusselt number of Nu =7.54 = Dy s commonly given
in literature [16], where h is the convection coefficient, D), = 2%

is the hydraulic diameter, and k is the conduction coefficient of
the fluid. Further, replacing the surface area of the channel with
A =2nyLH leads to the following heat flux balance with the only
unknowns being the number of flow channels 7 and the fluid exit
temperature 7Tp:

0 niNukLHAT;,, _ APW3HCAT,, )
2w 12n§vL '

Solving this equation for the fluid exit temperature 7, and plug-
ging back in leads to the following relation for the overall heat
flux as a function of the number of flow channels n;:

2, 4
O6NuoL f“’f

APW3H _ OualZuny
=S N (T-T)e W —Ti|, (6

0=
12nva

where « is the thermal diffusivity (o0 = %). We can now deter-

mine the optimal number of fins by setting jTQf =0 and solving
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for ny. Alternatively we can plot Eq. 6 as done for typical lattice
Boltzmann fluid and geometry values in Figure 5, which shows
that having approximately 6 flow channels represents the opti-
mal fin/channel configuration for a particular choice of parame-
ters. At this point, it should be pointed out that the thickness of
the fins was neglected during the present analytical analysis and
would lead to a decrease in the optimal number of flow channels.
However, the presented analytical derivation shows that there is
a specific number of fins that lead to optimum heat transfer. It is
this realization that motivates the development of a generalized
topology optimization algorithm for heat sink design.

0.025
0.02 /“\
0.015
o /
0.01 /
0.005

FIGURE 5. Relation between number of flow channels n ¢ and heat
flux Q in Watts.

Thermal Lattice Boltzmann Method

Since its introduction, the Lattice Boltzmann method (LBM)
has become a viable alternative to Navier-Stokes based meth-
ods for many flow scenarios [17, 18]. For coupled thermo-fluidic
problems three main methods - the two distribution approach, the
hybrid passive-scalar approach, and the multiple-relaxation-time
single distribution approach - have been developed and applied
to a variety of problems including forced and natural convection
(e.g. [19,20]). In the present work we use the two distribution
approach due to its simplicity and ability to represent varying
Prandtl numbers.

The two distribution function thermal LBM as used in this
work closely follows the models presented by Kao et al. [21] and
Yan and Zu [20] except for the use of three dimensional thermal
distribution functions. The thermal hydrodynamic lattice Boltz-
mann method approximates the Navier-Stokes and energy equa-
tions and results in a two-step computational process for fluidic
f and thermal components g. The key difference between the
fluid and thermal distribution functions is the definition of the

equilibrium distribution function as illustrated in the following
equations:
Collision — C:

Falxist) = fulxit) — jf{fm,»,z) T G

o) = galr) — lealwr) —g i) (8)
Propagation — P :

fa(Xi+ 8teq,t+8t) = fo(xi,1), ©)
ga(X;+ Oreq,t + 61) = go(Xi,1). (10)

The fluid and thermal equilibrium distribution functions are
given respectively as:

9 3
fa = wa,p |143(eq w)+ S(eq )’ =S|, (1)

gfxq = Wa’TT[1+3(ea'u)], (12)

where p is the macroscopic density, T is the macroscopic temper-
ature, u is the macroscopic velocity, and wq, are lattice weights
that depend on the lattice geometry. The lattice geometry differs
for the velocity and thermal distributions. The velocity distri-
bution is defined by a two dimensional, nine velocity (D2Q9)
model (see Figure 6a), allowing for the recovery of the macro-
scopic density, velocity and pressure. The thermal distribution is
defined as a three dimensional, 7 velocity (D3Q7) model [22]
(see Figure 6b), allowing for the heat transfer from the ther-
mal base layer to the design layer and the determination of the
macroscopic temperature values. Due to the difference in lat-
tice geometry the weights for the velocity distribution are wq, r =
[g, %, é, %, é, %, 3—16, %, 36] and the weights for the thermal distri-
bution are wo 7 = [17 3 g, DO 5

8s
WA v
‘/1"771"4 h T, £ A g
e 86
a) D2Q9 b) D3Q7

FIGURE 6. Directions for D2Q9 and D3Q7 LBM lattices.

Viscosity (V) and thermal diffusivity () can be shown to
be related to their respective relaxation times T, and 7y by a
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Chapman-Enskog expansion of the Lattice Boltzmann equations
[23,24]. The relationships are given by

v=(t,—1/2)c?8t (13)
o= (13— 1/2)c26t. (14)

For a given fluid, v and « are related by the dimensionless
Prandt]l number
%

Pr=— (15)

In order to continuously transition from fluid to solid and
vice-versa as required for gradient-based topology optimization,
the following physical properties/variables must vary as a func-
tion of the mapped design variables p(x) = p(s(x)): velocity,
thermal diffusivity and base-layer to design-layer conductivity.
Here it should be noted that the ultimate goal is not the accurate
representation of intermediate material as the final design should
consist primarily of pure fluid and pure solid material. Pingen
et al [7] have shown that the porosity model of Spaid and Phe-
lan [25] can be used to continuously scale the velocity of the
fluid:

u(1,x) = (1-p(x)™) u(t,x), (16)

where p(x) is substituted into the equilibrium distribution func-
tions (11) and (12) instead of u and a shaping factor of k, = 3 has
been introduced in order to improve the convergence properties
of the design optimization process.

Pingen and Meyer [8] have introduced a similar scaling to
transition from the thermal diffusivity of a fluid ot; to that of a
solid o using the shaping factor k7:

a(t,x) = o + (0 — 0ty )p(x) T (17)

Finally, in order to transition from an insulated (fluid) to a
conductive (solid) boundary between the base-layer and design-
layer, a partial bounce-back boundary condition - analogous to
the work by Pingen et al [26] for fluids - is applied to the thermal
distribution function in place of the propagation step:

25(1,x) = ge(1—p(x)*) + g5 (p(x))* (18)
6(1,x) = g5(1—p(x)*) + ¢ (p(x))*. (19)

Here, the shaping factor is defined by k;, and the boundary in-
teraction is illustrated in Figure 7 for one time-step. The result
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FIGURE 7. Scaling of conductivity between base-layer and design-
layer.

is an interface between the layers that transitions from being a
“zero-flux’ insulator when p = 0 (reflective to thermal fluxes) to
permitting full heat flux through the boundary in the case of a
solid p = 1.

It is important to note that the developed thermal topology
optimization framework is currently applied to steady-state flows
approximated through the following fixed-point formulation:

R(f,g,p) =M(f,g,p) — {g} =0. (20

Here R denotes the residual vector and the operator M performs
one collision and propagation step to advance the flow and tem-
perature to the next time step.

Thermal Sensitivity Analysis for Topology Optimiza-
tion

In order to solve the optimization problem (1) using a
gradient-based optimization algorithm, the design sensitivities of
the performance functional with respect to the design variables

i—‘? are required. Due to the large number of design variables,
°J

an adjoint formulation is traditionally used and was derived for
hydrodynamic and thermal lattice Boltzmann based topology op-
timization by Pingen and co-workers [7, 8] as:
dF 0F [T aﬁr(m e
de aSj a[f,g] aSj’
where f and g are the steady-state fluid and thermal distribution
functions approximated through the fixed-point formulation (20)
_ JR _ oM . . .
iand J= It — g I is the Jacobian of the fixed-point prob-
em.
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The evaluation of the partial derivatives %/ , aa[{g]’ 3? and

aa[év'[g] is necessary to solve the adjoint sensitivity equation (21).

The evaluation of these derivatives based on analytically derived
expressions is discussed in detail by Pingen and co-workers [7,8]
and the derivatives of the residual with respect to the design vari-
ables dR/ds; follow a procedure similar to the Jacobian. Thus,
the present work specifically focuses on the differences between
the analytical 2D thermal LBM Jacobian derived by Pingen and
Meyer [8] and the pseudo 3D Jacobian required for the present
work. Those differences are due to the use of the D3Q7 ther-
mal model and the thermal interaction between base-layer and
design-layer as shown in equation (18).

For the Jacobian, the derivative of the operator M can be
separated into a collision and a propagation step:

oM\’ oP \'/ ac \"
(ora) ~Gra) (Gra) - @
d[f,g] dif.el) \9[f.g]
Collision Jacobian: The sensitivities of the collision
operator with respect to the distribution functions, (0C/d [f,g])”
are determined by differentiating the fluid and thermal collision

steps (7) and (8) leading to the following localized collision step
Jacobian at each lattice node:

IC _If.8la _olf-8la 1[Ifgla If.8ld (23)
olf.gl dlf.glg  dlf.glg TlIlfglp Ilfiglpl

Here, o and B represent the 9 discretizations of velocity space
for the fluid distribution function f and the 7 discretizations of
velocity space for the thermal distribution function g. The partial
derivatives dfy/dfg = 1 and dgq/dgp = 1 when a = 8 and
zero otherwise.

Thus, only the derivatives of the equilibrium distribution
functions (11) and (12) are non-trivial. As a one-way coupling
is present between fluid and thermal state variables (no buoy-
ancy effects are considered), the velocity equilibrium distribution
function f*? depends only on the mass transfer variables p and u,
but the thermal equilibrium distribution function g is coupled
and depends on both mass and thermal transfer through the vari-
ables u and T. Following the detailed derivation by Pingen and
Meyer [8] for 2D problems, this leads to a block diagonal global
Jacobian and a highly populated, 16 x 16 (pseudo 3D), local Ja-
cobian of the collision operation C; at each lattice node i shown
in Figure 8:

<3Ci>T__<a{%@5}>T_ T e
9 [fs.85] 9 [/p-5] 0k o
z9g(, e 3[{6

N g
o N AL AR s
flo'ooo""(]t'oo(]ﬂ
file o o o o o o o o0 o o o o0 0
f;o'ooo'o'oOooooOO
file o o o o o o o oJO ¢ o o o 0 0
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FIGURE 8. Local 16 x 16 Collision Jacobian

Considering the local collision Jacobian depicted in Figure
8, the 9 x 9 block in the top left corner represents the hydro-

dynamic component of the J. acobian 2 a 2 and is fully populated.

The 9 x 7 block in the top right corner represents the coupling
between thermal and hydrodynamic distribution functions ‘3‘%.
As the stationary distribution function go and those moving in
the vertical direction (3rd dimension) gs and g¢ are independent
of the flow velocities, those columns are zero. The 7 x 9 block in

the bottom left corner represents the coupling between hydrody-
namic and thermal distribution functions % and is filled with all

zeros due to the one-way coupling in the present model. Finally,
the 7 x 7 block in the bottom right corner represents the thermal

component of the Jacobian g%; and is fully populated.

Propagation Jacobian: The second component needed
for the determination of the Jacobian of the lattice Boltzmann
system is the derivative of the propagation operator with respect
to the distribution functions, (dP/(d [f,g]))”. In previous work
by Pingen and co-workers [7, 8] this simply led to a shifting of
the rows from the collision Jacobian as the basic propagation
step leads to a movement of distribution functions to neighbor-
ing nodes. In the present model, the partial bounce-back condi-
tion (18) modifies the propagation step and leads to the following
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augmented propagation Jacobian:

_ [7,8] , (xi — Steq,t — 5t) 0s)
a[fvg]ﬁ (Xj7t)

1—p(x*)ifg B =[56], a=16,5x;=x;,

p(x)* ifg, p=0=150],x; =x; — Oteg,

1 if B =, xj =x; — Sreq,

0 otherwise.

From this equation it can be seen that when the Jacobians of
the collision and propagation operators are combined, the Jaco-
bian of the propagation operator primarily leads to a shifting of
rows from the collision Jacobian except for the vertical compo-
nents of the thermal distribution function (gs, g¢), which lead to a
scaling and addition of the corresponding rows from the collision
Jacobian.

Objective Function: The objective for the example
problems presented in this work is to minimize the negative net
heat flux out of the design domain measured between the 2nd
and 3rd node at the inlet and the 3rd to last and 2nd to last nodes
along the outlet. Nodes at least 1 removed from the inlet/outlet
where chosen to reduce boundary effects, leading to the follow-
ing performance functional:

F = *A%gnet = *(%y(mt *%gin) (26)
/ 81—/ 83—/ g1+/ 83-
x=2 x=3 x=Ix—2 x=Ix—1

Sensitivity Validation: 1In order to ensure that the ana-
Iytical sensitivity analysis is accurate, a finite difference sensitiv-
ity analysis was implemented. The finite difference verification
was performed by finding the heat flux from the domain with
a single, intermediate design variable fin (s = 0.5). The design
variable was then perturbed by a factor €, leading to a change
in the corresponding heat flux. The difference between the two
heat flux values was divided by the perturbation € and then com-
pared to the analytic sensitivity value in order to compute the
percent difference between both. For a small interval around the
design variable s = 0.5 the sensitivities are expected to behave
in a nearly linear manner resulting in good agreement between
analytical and finite-difference results. It can be seen from Fig-
ure 9 that for epsilon values from 10~7 — 1073 the analytical and
finite-difference sensitivities are in good agreement and the im-
plemented analytical sensitivity analysis is accurate. For smaller
€ values the finite difference results are inaccurate due to numer-
ical noise and for larger € values the linear finite difference ap-

proximation inaccurately approximates the underlying nonlinear
problem.
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FIGURE 9. Comparison of Analytical and Finite Difference Sensitiv-
ities

EXAMPLES

The goal of this work is the development of a topology opti-
mization framework to determine optimal heat-sink designs. The
objective is to maximize the heat transfer from the thermal base-
layer of the design problem illustrated in Figure 10. The blue
color in the figure represents a prescribed fluid region at the front
and back of the design domain in order to avoid inlet and out-
let effects. Similarly, the sides are prescribed as solid material.
The temperature of the fluid at the inlet is set to 20 degrees in
LBM units and the thermal base-layer side temperature is set to
200 degrees in LBM units. The solid material is highly con-
ductive, as to model material commonly used in heat sinks, the
thermal diffusivity in this problem is ¢, = 0.5 in LBM units. The
fluid is much less conductive, having a thermal diffusivity set to
oy = 0.00211 in LBM units. The scaling factors of this problem
are set to K, = 3, k, = 3, and k; = 3. The problem is solved on a
40 x 40 mesh with a design domain of 22 x 38 where each lattice
node is linked to one design variable leading to 836 total design
variables.

With these settings, the optimal design in Figure 11 was ob-
tained. The dark blue at the bottom of the spectrum of the poros-
ity scale in Figure 11 represents complete fluid, the dark red at
the top of the same scale represents complete solid. The results
show a large amount of intermediate porosities throughout the
design domain, resulting in a non-intuitive, impractical and non-
physical design. While the intermediate porosities might suggest
a very fine fin structure smaller than permitted by the problem
resolution, the ultimately desired result is a design with no inter-
mediate porosities in order to produce a realistic heat sink design.
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FIGURE 10. Initial Design Domain
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FIGURE 11. Optimization of Initial Design Domain on a 40 x 40
Mesh

Due to this undesired design outcome we simplify our design
setup in the following section in order to further investigate the
behavior of the optimization algorithm.

Single and Triple Fin Experiments

Instead of a design domain with design variables corre-
sponding to each lattice node, we simplify the problem to the
creation of one fin in the center of the domain as shown in Figure
12. The area around the fin is prescribed fluid and the fin is only
allowed to change as one design variable. With this new design
domain we keep all remaining variables unchanged.

Using this design domain the results shown in Figure 13 are
obtained. The fin converges towards a pure solid but stops at a re-
sult of s = 0.9025 instead of becoming completely solid. Having
a fin with this porosity improves the objective value from that of
an empty design domain. With a completely fluid design domain
the objective value of the system is —7.8 and the objective value
with a fin of porosity s = 0.9025 is —15.2. The design stopped
short of forming a solid fin because the objective for s = 0.9025
is better than that of a completely solid fin as shown in Figure 14.
This effect is due to the relative interplay of fluidic and thermal
effects as the design variable changes from fluid to solid and can

T

/' 200 degrees LBM units
U|n/T|n

20 degrees LBM units

FIGURE 12. Single Fin Design Domain

possibly be overcome through the use of different scaling factors
K.

Porosities Fluid Temperature

20

10
(a)

FIGURE 13. Single Design Variable Fin on a 25 x 25 Mesh

To create an end result of complete fluid or solid features the
porosity vs heat flux graph must be continuously decreasing. Fig-
ure 14 shows that objective values at the current design settings
dip lower than the objective value for a complete solid. Options
to improve this functional behavior are investigated next.

Kappa and Penalty Testing

First we investigate possible changes to the scaling factors
Ky, K, and K, to change the functional dependency of the hy-
drodynamic and thermal parameters on the design variables. As
we are primarily concerned with designs that consist of complete
fluid and solid without intermediate porosities, these functional
relations can be selected in order to obtain a better behaving op-
timization problem. The scaling factor kappa allows a change in
values for K, k;, and k,, without impacting the accuracy of the
analysis for the final converged design.
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FIGURE 14. Objective vs. Porosity With All Kappas Equal to 3 for a
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FIGURE 15. Kappa Testing (a) Objective vs. Porosity With
Changing (b) Objective vs. Porosity With Different K, k;, and k;, Val-
ues

A sample of the different testing results is shown in Figure
15a and b for different kappa values. Based on the results shown
in Figure 15a, increasing k;, solved the problem of objective val-
ues dipping lower than those with a porosity of one but created
an increase in the objective at low porosities. Since combina-
tions of different kappas are not producing the desired continu-
ously decreasing result we turn to a penalty formulation. Penalty
approaches are commonly used in structural topology optimiza-
tion and are referred to as SIMP-models (Solid Isotropic Material
with Penalization) [27]. For our problem we augment the objec-
tive through the following penalty formulation:

Fp=F+C(p"(1-p'), 27)

where C and f are scaling parameters that can be adjusted to
improve the behavior of the optimization problem for interme-
diate porosities by penalizing those intermediate values. Using
the kappa results shown in Figure 15 we can apply this penalty
formulation to see if there is a penalty factor that works for our
design problem. Using the present problem with x, =2, K, =4,
Kp = 2, and a penalty factor with C =2 and f = 2 leads to a
continuously decreasing relation between the design variable and
objective as shown in Figure 16. Applying this result to one de-
sign variable fins in the middle of the design domain works for
the 25 x 25 mesh as shown in Figure 17, leading to a completely
converged design.

Porosity

0 01 02 03 04 05 06 07 08 09 1
-6 T

-10

Objective

-12

-14 \

-16

FIGURE 16. Objective vs. Porosity With Penalty Factor Correction

We now want to increase the complexity of the design prob-
lem by re-introducing additional design variables. To do so, we
solve a design problem with 3 design variables for the possible
generation of three fins. The results for this study are shown in
Figure 18 and confirm that the use of k, = 2, K; = 4, K, = 2, and
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FIGURE 17. Optimization of One Fin With Penalty Factor for a 25 x
25 Mesh

a penalty factor with C=2 and f=2 leads to converged optimal
designs for the current problem set-up.
Porosities
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FIGURE 18. Optimization for Three Fins With Penalty Factor for a
25 x 25 Mesh

Optimization With Seven Fins

As shown in the analytical section of this paper, there is an
optimal number of fins for a given design domain. Having tested
a single and triple fin design with one and three design variables,
respectively, we now want to investigate a problem with 7 design
variables and therefore a possibility of generating 7 fins in the
domain as shown in Figure 19. The goal is to determine if the
optimizer can find the optimal configuration of fins. In order to
account for the fact that 7 design variables are now penalized, the
scaling factor C has been adjusted to a value of C = 1.30 to fa-
cilitate converged designs while all other settings are maintained
from the previous problems.

As shown in Figure 20, our optimization framework leads
to a design with three fins, equivalent to that shown in Figure
18. Given the design space of seven design variables, this 3 fin
solution is indeed optimal. Of interest is also to see how the op-
timizer progresses towards the design, which is shown in Figure

10

be9909/ 4

20 degrees LBM units

200 degrees LBM units

FIGURE 19.

Initial Design Domain For Seven Fins

20. First the optimizer begins to form 7 fins as shown in Figure
20b. Then the optimizer reduces the number of fins to 3 in Fig-
ure 20c which become completely solid at different rates. The
progression of the objective as a function of design iterations is
shown in Figure 20a. This example problem shows the poten-
tial of the developed thermal topology optimization approach.
More work is needed to develop a general penalty approach that
is applicable to the general topology optimization problem where
each lattice node is linked to one design variable as was the case
in the first example problem shown in Figure 11.

CONCLUSION

We have introduced a lattice Boltzmann method based
pseudo 3D fluid-thermal topology optimization approach and
have developed the corresponding adjoint sensitivity analysis.
We have validated the sensitivity analysis and have applied the
resulting optimization framework to the optimal design of a heat
sink. Differing from past LBM based topology optimization, it
was shown that the non-linear nature and complex interaction
of hydrodynamic and thermal effects necessitates the use of a
penalty formulation in order to prevent intermediate porosities.
The resulting optimization framework was than illustrated for a
multi-fin heat sink optimization. Future work will focus on gen-
eralizing the penalty formulation such that it is applicable to the
more general topology optimization problem where each fluid
node corresponds to a design variable, maximizing the design
space and thus permitting the generation of a wider range of op-
timal designs.
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