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Mathematics 
and the 

Beginnings of 
Civilization

I.



Babylonians Egyptians

 Concept         
of angle 

 Crude 
calculations 
areas of fields

Division of 
fields

Herodotus, 
Egyptian 
geometry, and 
flooding of Nile



II.

Ongoing 
Question of 
Abstraction



Philosophers

 Pythagorean

– abstractions vs. 
physical objects

 Eleatic

– discrete and 
continuous

 Sophist

– understand universe

 Platonist

– distinction of 
numbers

– ideal and material

 Eudoxus

– proof of shapes



Greeks

Desire to understand world

Math as an investigation of 
nature

Reduction of chaos and mystery



Renaissance

Math as one remaining body of 
truth

Unity of God’s view of nature and 
mathematic’s view of nature

 Contribution of concepts



17th Century

 Investigation of nature

 Union of mathematics and science                           

18th Century

 Math as means to physical end

 Design of universe               



III.

Finality of 
Abstraction



19th Century

 Concepts with no direct physical 
meaning

 Arbitrary concepts not physical 
yet useful

 Creation of own concept’s in 
mathematics



“Whereas in the first part of the century 

they accepted the ban on divergent 

series on the ground that mathematics 

was restricted by some inner 

requirement or the dictates of nature to 

a fixed class of correct concepts, by the 

end of the century they recognized 

their freedom to entertain any ideas 

that seemed to offer any utility.”

Morris Kline



IV.

NATURE
A Continual Portrait 

of Mathematics



NATURE

Calculus

– polar 
coordinates

Abstract 
Algebra

– group theory 
and symmetry

Geometry

– tiling by regular 
polygons

 Fractals

– self-similarity



Calculus

 (r,    )

 r = a  circle of radius a centered
at 0     

 Line through 0 making an 
angle with initial ray

r

O
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Calculus

 X = R cos 0

 X = cos 0 =    adjacent
R hypotenuse

 Y = R sin 0

 Y = sin 0 =    opposite
R hypotenuse 



Calculus

Mathematica program

 Needs[“Graphics`Graphics”]
PolarPlot[(1 + Cos [5t]),{t, 0, 2Pi}]



PolarPlot@H1+ Cos@3 tDL,8t, 0, 2 Pi<D

PolarPlot@H1+ Cos@3 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ Cos@4 tDL,8t, 0, 2 Pi<D



PolarPlot@H1+ Cos@6 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ Cos@13 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ Cos@16 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ Cos@20 to 30 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ .15 Cos@5 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ .5 Cos@5 tDL,8t, 0, 2 Pi<D

PolarPlot@H1+ .5 Cos@5 tDL,8t, 0, 2 Pi<D
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PolarPlot@H1+ Cos@t�2DL,8t, 0, 2 Pi<D



PolarPlotAJ1+ 2 CosA3 t

20
EN,8t, 0, 4 Pi<E

ParametricPlot@logspiral@1, 0.08D@tD��Evaluate,8t, 0, 12 Pi<, AspectRatio - > Automatic,

PlotPoints - > 80D
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helix@a_, b_D@t_D:=8a * Cos@tD, a * Sin@tD, b * t<
ParametricPlot3D@Evaluate@helix@1, 0.2D@tDD,8t, 0, 4 Pi<, PlotPoints - > 200,

PlotRange - >88- 1, 1<,8- 1, 1<,80, 0.8 Pi<<D
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Abstract Algebra

 Dihedral group of 
order n = Dn

 Elements can 
include 

– flip horizontally

– flip vertically

– flip diagonal

– rotation

 4 sides = 8 elements    
3 sides = 6 elements    
n sides = 2n elements



Abstract Algebra

 Because of the similarity of these objects to 
the group Dn ,properties of closure, inverse, 
indentity, and  associativity hold.

 We may also examine the object with terms 
such as:

– subgroups, center of group, centralizer of group, 
cyclic group, generator, permutations, cosets, 
isomorphism, Lagrange’s theorem, direct products, 
normal subgroups, homomorphisms, etc.



Abstract Algebra

 Many objects have rotational symmetry 
and not reflective symmetry.  If so, 
they are called cyclic rotation groups of 
order n.

 Some have only reflective symmetry 
and no rotational symmetry (except R0 ) 
and I have chosen to call them 
reflection group.















Geometry

 Any polygon can be inscribed  
in a circle

 Sum of angle of adjoining
triangles must be 360

 Sum of interior angles of an n-gon
is (n-2)Pi

 Equation for one interior angle is
(n-2)Pi = n Pi - 2Pi = Pi - 2Pi

n       n n



Geometry

 N=3      Pi/3 x 6 = 2Pi

 N=4      Pi/2 x 4 = 2Pi

 N=5      3Pi/5 x 4 = 12Pi/5 doesn’t = 2Pi

 N=6      2Pi/3 x 3 = 2Pi

 N > 6    one angle must be > 2Pi/3
and add up to 2Pi (less than 3 
times)

 only 2,1 times left / angle Pi, 2Pi  
BUT not an n-gon







Fractals

 Fractals are objects with fractional 
dimension and most have self-similarity.

 Self-similarity is when small parts of 
objects when magnified resemble the 
entire way.

 The boundaries are of infinite length 
and are not differentiable anywhere 
(never smooth enough to have a 
tangent at a point).



Fractals

One specific class of fractals 
is trees.

Fine-scale structures of the 
tiniest twig are similar to 
that of the largest branches.



Fractals

 Definition 5.1.2

– If an object can be decomposed into 

N subobjects, each of which is exactly 

like the whole thing except that all 

lengths are divided by s, then the 

object is exactly self-similar, and the 

similarity dimension d of the object is 

defined by d = log N .

log s  












