"Realizing Strategies for winning games"

Senior Project
Presented by Tiffany Johnson
Math 498
Fall 1999

Outline of Project

- O Briefly show how math relates to popular board games in playing surfaces & strategies as well as teaching mathematical concepts
- Analyzing the game Lights Out by use of linear algebra
- **Show how games can help students learn** mathematical concepts

ନ୍ Chess

aMonopoly

Scrabble

2 Clue

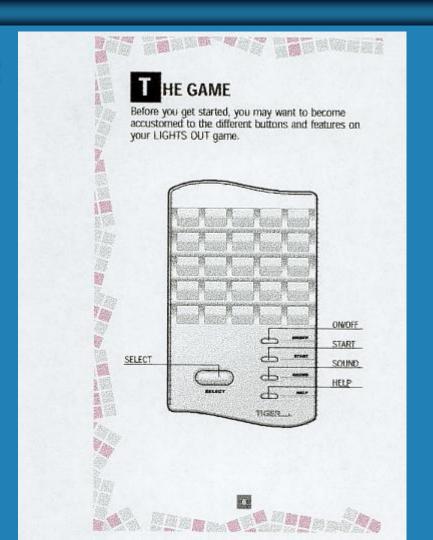
Rect Four

Mathematical skills learned by board games

Chess	Monopoly	Scrabble	Clue	Connect Four
Memory	Money Skills	Decision Making	Logical & deductive reasoning	Visual perceptual Organization Skills
Game theoretic ideas	Doubling Skills	Reinforcement of the learning of mathematical operations	Predicting & Planning	Helping to learn to read & build charts & graphs & to align columns
Logic	Logical & deductive reasoning	Probability	Visual perceptual skills	
Reasoning & Problem Solving Ability	Probability	Strategic Thinking Skills	Organizational Skills	
Concentration & visualization skills			Problem Solving Skills	

Introduction of Lights Out

Name The game itself:



How to play Lights Out

- *Q* Configuration of lights appears
- Pushing a single button will change the on/off state of the light pushed and the adjacent buttons to that button
- **Nake a series of moves that will turn all the lights out**
- **Represented to next puzzle**

Linear Algebra Terms to Review

- Gauss-Jordan: applying elementary row operations to a matrix to obtain a reduced row-echelon form
- \mathfrak{A} column space: the subspace of \mathbb{R}^n spanned by the column vectors of an m x n matrix
- **a** column vector: a matrix that has only one column

Linear Algebra Terms to Review

- A transpose: the matrix obtained by placing the columns of a given matrix into rows, with the first column becoming the first row, etc.
- Ω null space: the solution space of the syste $A\vec{x} = \vec{0}$
- a rank: the dimension of the row space (and the column space) of a matrix

Linear Algebra Terms to Review

- a property of two vectors in an inner product space stating that their inner product is zero
- A basis: a finite set of vectors which is linearly independent and spans a vector space

Mathematical analysis of a winning strategy to Lights Out

- **Output** Developed by the use of linear algebra
- **2** initial observations of the game:
- pushing a button twice is the same as not pushing it at all
- the on/off state of a button depends on how often (whether even or odd) it and its neighbors have been pushed; the order in which the buttons are pushed does not matter

Mathematical analysis of a winning strategy to Lights Out

<u>၈</u> Z_2

represents the use of modulo 2 arithmetic which is the use of only 2 numbers which are 1 and 0

 Ω Examples of modulo 2 addition:

$$1+1=0$$

$$1+0=1$$

$$0+1=1$$

Mathematical analysis of a winning strategy to Lights Out

- Ω The entire array is represented by a 25 x 1 column vector D; the state of each light = $b_{i,j}$
- Pressing a single button changes the pattern of lights by adding to *b* a vector that has 1's at the location of the button and its neighbors and 0's elsewhere
- ${\cal A}$ A strategy is represented by another 25 x 1 column vector ${\it x}$, where $x_{i,i}$ is 1 is the (i,j) button is to be pushed, and 0 otherwise

Vector *h*, Vector *x* & Obtaining configuration *h* by strategy *x*

$$\vec{b} = (b_{1,1}, b_{1,2}, ..., b_{1,5}, b_{2,1}, ..., b_{5,5})^T$$

Both vectors are 25 x 1
 column vectors

$$\vec{x} = (x_{1,1}, x_{1,2}, ..., x_{1,5}, x_{2,1}, ..., x_{5,5})^T$$

Starting with all the lights out, then:

$$b_{1,1} = x_{1,1} + x_{1,2} + x_{2,1}$$

$$b_{1,2} = x_{1,1} + x_{1,2} + x_{1,3} + x_{2,2}$$

$$b_{1,3} = x_{1,2} + x_{1,3} + x_{1,4} + x_{2,3}$$

Checking the result

- The matrix product $A\vec{x} = \vec{b}$ checks that the result \vec{b} is of the strategy \vec{x} , with matrix A defined in the next slide.
- Q Given a puzzle \vec{b} , it is winnable if there exists a strategy \vec{x} to turn out all the lights in \vec{b} .
- ${\it Q}$ To find a strategy, solve $\vec{b}=A\vec{x}$

Matrix A: 25 x 25

⊘ I = the 5 x5 identity matrix

 Ω 0 = the 5 x 5 matrix of all zeros

 Ω B = the 5 x 5 matrix shown next

Matrix B:

6/

	1	1	0	0	0
1	[1	1	0	0
(\mathbf{C}	1	1	1	0
(C	0	1	1	1
(\mathcal{C}	0	0	1	1

Matrix A and Matrix B are both symmetric

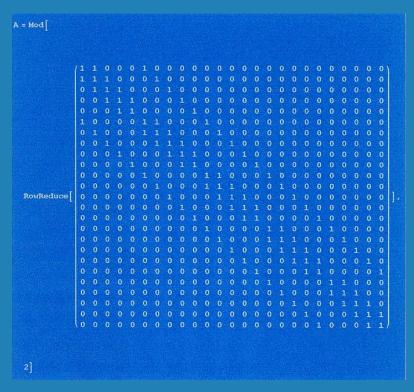
Mathematica will find the column space of matrix A

- O Use commands
 RowReduce and Mod
 inside of Mathematica
 to analyze matrix A

- *№* E=the Gauss-Jordan echelon form
- R= the product of the elementary matrices which perform the row reducing operations
- A=the 25 x 25 matrix defined previously and shown in full on next slide

Finding the column space of A

∂ This is Matrix A:



Natrix A reduced:

Analyzing the column space of A

- **Matrix E is of rank 23, with two free** variables: $x_{5,4}$ and $x_{5,5}$
- **Name :** The last two columns of E are:

Since A is symmetric, the column space of A
 A=the row space of A

Analyzing the column space of A

- The row space of A is the orthogonal complement of the null space of A, which in turn equals the null space of E
- ${\it \Omega}$ To describe the column space of A, we need to determine a basis for the null space of E
- Ω Examine the last 2 columns of E which are:

Theorems for solutions

- Theorem 1. A configuration \vec{b} is winnable if and only if \vec{b} is perpendicular to the two vectors \vec{n}_1 and \vec{n}_2 ,
- Theorem 2. Suppose that \vec{b} is a winnable configuration. Then the four winning strategies for \vec{b} are:

$$R\vec{b}$$
, $R\vec{b} + \vec{n}_1$, $R\vec{b} + \vec{n}_2$, $R\vec{b} + \vec{n}_1 + \vec{n}_2$

Practical method of solving puzzles in Lights Out

- * For every on light in the top row, press the button under it to turn it off.
- * Repeat step one for rows 2,3,4.
- # If the bottom row is all off, you are done. If the bottom row has any of the following patterns, the puzzle can be solved:

 00111
 01010
 01101

 10001
 10110
 11011

11100

Practical method of solving puzzles in Lights Out

- The puzzle cannot be solved if any other configuration is left on row 5
- To actually solve these puzzles, number the buttons in the top row from left to right 1,2,3,4,5. Find the pattern in row 5 in the following table and press the top row button(s) indicated:

Practical method of solving puzzles in Lights Out

00111	4
01010	1&4
01101	1
10001	1&2
10110	5
11011	3
11100	2
	<u> </u>

Linking the linear algebra method to the practical method

- Any of the previous configurations shown are orthogonal to both vectors \vec{n}_1 and \vec{n}_2
- *a* Example:

Games used in the classroom

- **Advantages**
- solidify mathematical reasoning & calculating skills
- development of strong logical thinking skills and fine motor skills
- Other thinking skills that develop are: interpretation, optimization, analysis, variation, probability, and generalization

- *Olisadvantages*
- students move chairs & tables and circulate freely which can disrupt the class room
- students gather in groups and argue strategy when playing a game
- divert from the conventional classroom teachings

Characteristics of 'mathematical games'

- ର only 2 players
- **a** involve only thinking skills
- **A offer full information at all times**
- **a** do not, in general, involve luck
- ${\mathfrak Q}$ usually are finished within a reasonable span of time
- **are also played for pleasure**
- **A require a minimum of special equipment**

Examples of mathematical games

- Noughts & Crosses
 (Tic-Tac-Toe)
- a Nim
- _N Make 15
- **Solution** Blox
- **a** End to End
- **Q Odd Wins**

- **a** Triangle Sum
- **Q Die Adds**
- *Q* Capture the Numbers
- **Solution**
- **Name of Losers**

References

Freeman, Macuen. <u>Research and Development of Simulation Games in Mathematics for the Intermediate Student.</u> Long Beach: California State College, 1969.

Anderson, Marlow and Todd Feil. "Turning Lights Out with Linear Algebra" Mathematics Magazine. Vol.71, No.4 Oct. 1998: 300-303.

Tapson, Frank. "Mathematical Games" <u>Mathematics in School.</u> September 1998: 2-6.

Caldwell, Marion Lee. "Parents, Board Games, and Mathematical Learning" Teaching Children Mathematics. Vol. 4, No. 6 Feb. 1998: 365-367.

http://www.deja.com

http://www.hasbroserabble.com/play.html

http://eatalog.com/pdf/383/99746.pf

http://chess.about.com/games/chess/librar y/blrules.htm