
EXAMPLE OF FREQUENCY DOUBLING
INTRODUCTION
The focus of this project is to measure the chaotic 
behavior of water droplets under various conditions 
and, if possible, to use these measurements to 
calculate the Feigenbaum bifurcation constant, δ. 
According to several published works, the driprate of 
water does not smoothly and continuously increase 
over time in response to increasing water pressure. 
Instead, the falling droplet’s frequency sharply doubles 
over distinct intervals until the system eventually 
becomes chaotic. By adopting and utilizing several 
di�erent experimental techniques, this research 
chronicles the e�orts in documenting this odd, 
counterintuitive behavior.
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RESULTS
Using the first method, period doubling was observed, but the transitional points 
were extremely sensitive on the angle of the faucet handle. Whenever the driprate 
transitioned, snapshots were taken of the faucet handle’s corresponding angle. 
The changes in the transitional angles ranged from 0.604° to 0.691°, an extremely 
small window for reliable data analysis. Using the second method, period doubling 

THEORY OR METHODS
Throughout the course of this experiment, several 
di�erent experimental techniques were utilized to 
measure the Feigenbaum bifurcation constant. Initially, 
I attempted to carefully, manually adjust a faucet handle 
to produce frequency doubling in a typical faucet’s 
driprate. A Photogate Head was mounted below the 
faucet head, allowing for the direct measuring of the 
driprate. A laser is fired from the Photogate Head, and 
whenever it becomes blocked (due to a falling droplet 
of water), a signal is sent to a computer. These signals 
are then graphed as ones and zeros in Capstone. 
Additionally, a Canon EOS 80D camera was mounted 
above the faucet handle, allowing for the measurement 
of the faucet handle’s change in angle. The purpose of 
this was to determine if the formula lim                       =δ (or, 
rather, a finite termination of the formula) could be 
applied to the arclengths characterized by the 

CONCLUSIONS
Out of every tested method, only two exhibited 
period doubling, and out of those two, only one 
method yielded quantifiable results for analysis. From 
the graph provided, the driprate transitioned from an 
average of 0.092Hz, 0.225Hz, 0.404Hz, and 
0.594Hz, showing a rough yet noticiably distinct 
correlation with the predicted period doubling. Using 
the transitionary angles for the a_n, the Feigenbaum 
constant was measured to range between 0.437 and 
0.874, a significant departure from its known value. It 
should be noted that the Feigenbaum constant 
seems to be notoriously di�cult to measure. While I 
found other research which documents frequency 
doubling in dripping faucets, I could not find any 
which has been able to accurately measure the 
Feigenbaum constant.

FURTHER PLANS
Regrettably, due to health concerns, I was unable to 
reach this experiment’s full potential. If time 
constraints were not an issue, then I would have liked 
to have discovered a consistent method for 
producing frequency doubling in a dripping faucet, as 
well as a method for easily extrapolating the results of 
the experiment. Various other methods of 
experimentation were considered (such as 
constructing my own sink with an extremely sensitive 
facuet), but these plans were unable to be realized 
due to various reasons.

transitionary angles of the faucet handle to approximate the Feigenbaum 
bifurcation constant. Secondly, I tied one end of a string to a small pole and 
tied the other end to the faucet handle. I then slowly rotated the pole about its 
symmetrical axis of rotation, winding the string around the pole, causing the 
faucet handle to turn. Whenever the driprate would transition, I would mark the 
location of the string’s current position relative to the pole with a pen. Like 
Procedure One, this was done to determine in the formula lim                 =δ 
could be applied to the lengths of the sections of the string characterized by 
the transitionary angles of the faucet handle. A Photogate Head was also 
placed below the faucet head to directly monitor the driprate. Thirdly, I 
attempted to construct several di�erent variations of a draining reservoir. A 
container filled with water was attached to a thin capillary tube of 10mm 
diameter. This was chosen in hope that the resulting capillary action would 
directly oppose the draining water, preventing a constant outpouring of water. 
Several di�erent iterations of this procedure (about half a dozen) were 
conducted to ensure consistent results.

MEASURING THE CHAOTIC BEHAVIOR OF 
DRIPPING WATER

was observed. However, the demarcations proved to 
be far too narrow, sometimes creating overlap in the 
penstrokes. The third method proved to be 
unreliable, regardless of iteration. Under some 
iterations, the driprate would never decrease. Under 
other iterations, the driprate would decrease, but 
would do so smoothly and continuously. Sometimes, 
instead of the driprate suddenly halving (which 
would be expected from a draining reservoir), the 
frequency would suddenly double.


